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RESUMO 

Modelos de regressão são amplamente utilizados em Economia, principalmente quando os 

dados envolvidos são taxas e proporções. O modelo de regressão Lindley-Unitária é definido 

para dados restritos ao intervalo (0,1). Em problemas regulares, a inferência baseada na teoria 

assintótica pode não ser confiável, quando a amostra é pequena. É o caso da estimativa de 

máxima verossimilhança e do teste de Wald. Correções de vieses dos estimadores de máxima 

verossimilhança e ajustes feitos nas estatísticas de teste são uma forma amplamente utilizada 

para resolver tais problemas. Neste artigo, obtemos uma expressão para corrigir o viés e uma 

fórmula para a matriz de covariância de segunda ordem para os estimadores de máxima 

verossimilhança no modelo de regressão Lindley-Unitária. Evidências numéricas mostram que 

os estimadores corrigidos têm vieses menores e que o teste de Wald baseado em covariância de 

segunda ordem é mais preciso. Por fim, é apresentada uma aplicação a dados econômicos, em 

que a taxa de Crescimento do PIB per capita é modelada em função da variável de abertura a 

preços constantes. 

Palavras-chave: correção de viés; teste de Wald modificado; matriz de covariância de segunda 

ordem; regressão Lindley-unitária. 
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ABSTRACT 

Regression models are widely used in Economics, particularly when the data involved are rates 

and proportions. The Unit-Lindley regression model is defined for data restricted to the (0,1) 

range. In regular problems, inference based on asymptotic theory can be unreliable when the 

sample is small. This is the case of the maximum likelihood estimation and the Wald test. 

Corrections of biases in the maximum likelihood estimators and adjustments made in the test 

statistics are a widely used way to solve such problems. In this article, we obtain an expression 

to the correct the bias and a formula for the second-order covariance matrix for the maximum 

likelihood estimators in the Unit-Lindley regression model. Numerical evidence shows that the 

corrected estimators are less biased and that the Wald test based on second-order covariance is 

more accurate. Finally, an application to economic data is presented, in which the Growth Rate 

of Real GDP per capita is modeled as a function of openness in constant prices. 

Keywords: bias correction; modified Wald test; second-order covariance matrix. Unit-Lindley 

regression. 

RESUMEN 

Modelos de regresión son ampliamente utilizados en Economía, principalmente cuando los 

datos involucrados son tasas y proporciones. El modelo de regresión Lindley-Unitaria está 

definido para datos restringidos al intervalo (0,1). En problemas regulares, la inferencia basada 

en la teoría asintótica puede no ser confiable cuando la muestra es pequeña. Este es el caso de 

la estimación de máxima verosimilitud y la prueba de Wald. Las correcciones de sesgo de los 

estimadores de máxima verosimilitud y los ajustes realizados en las estadísticas de prueba son 

una forma ampliamente utilizada para resolver tales problemas. En este artículo, obtenemos una 

expresión para corregir el sesgo y una fórmula para la matriz de covarianza de segundo orden 

para los estimadores de máxima verosimilitud en el modelo de regresión Lindley-Unitaria. 

Evidencia numérica muestra que los estimadores corregidos tienen sesgos más pequeños y que 

la prueba de Wald basada en la covarianza de segundo orden es más precisa. Por último, se 

presenta una aplicación a datos económicos, en la que se modela la Tasa de Crecimiento del 

PIB Real per cápita en función de la apertura en precios constantes. 

Palavras clave: Corrección de sesgo. Prueba de Wald modificada. Matriz de covarianza de 

segundo orden. Regresión Lindley-Unitaria. 
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1 INTRODUCTION 

In practice, we often need to model proportion and percentage data restricted to the (0,1) 

range. In economics, a key example is the rate of economic growth, which measures the relative 

change in GDP over time. Accurately modeling such data is essential for understanding 

macroeconomic dynamics, assessing the effects of policy interventions, and forecasting 

economic performance. Traditional models, such as linear regression, may not be suitable due 

to the bounded nature of the dependent variable, making specialized distributions particularly 

useful. 

Regression models for data restricted to the (0,1) range allow for more precise 

estimation and inference, allowing economists to identify key growth drivers, such as trade 

openness, investment rates, and institutional quality, while accounting for the inherent 

constraints of the data. One of the most widely used models for rate and proportion data is Beta 

regression, proposed by Ferrari and Cribari-Neto (2004), which adopts a parameterization based 

on the mean and dispersion parameters. However, despite its popularity, the Beta distribution 

has limitations, particularly in handling extreme skewness or in cases where the variance 

structure does not adequately capture the data characteristics. To address these challenges, 

alternative distributions have been proposed to enhance flexibility and improve empirical fit. 

Recent studies have introduced several distributions as alternatives to the Beta model 

for data in the (0,1) range, e.g., Gómez-Déniz, Sordo and Calderín-Ojeda (2014), Jodrá and 

Jiménez-Gamero (2016), Altun and Cordeiro (2020), Guedes, Cribari-Neto and Espinheira 

(2020). One notable example is the Unit-Lindley distribution, proposed by Mazucheli, 

Menezes, and Chakraborty (2019), which was derived from a transformation of the Lindley 

distribution (Lindley, 1958). The authors applied the Unit-Lindley model to analyze data on 

inadequate access to water and sewage in Brazilian households. The Lindley distribution has 

desirable statistical properties, including greater flexibility in skewness and kurtosis, making it 

a promising alternative to the commonly used exponential distribution (Ghitany, Atieh, & 

Nadarajah, 2008).  

From an inferential perspective, maximum likelihood estimators (MLEs) are generally 

biased when the sample is small. This bias is usually of order n-1, with n being the sample size. 

Thus, a correction in the bias is necessary when the amount of data is small. The formulation 

of expressions that allow bias correction makes it possible to obtain more accurate estimators. 

Cox and Snell (1968) proposed a general expression for the order bias of MLEs. Since then, the 

formula proposed by these authors has been applied to various models. Bias reduction 

techniques have gained significant attention in the literature due to their ability to 

improve inference, particularly in small-sample scenarios where standard estimators 

perform poorly.  Bias correction methods for nonlinear regression models with t-Student errors 

can be found in Vasconcelos and Cordeiro (2000). More recently, bias correction formulas have 

been developed for Unit-Gamma distribution parameters (Mazucheli; Menezes; Dey, 2018), 

elliptical models with general parameterization (Melo; Ferrari; Patriota, 2018), and multivariate 

Dirichlet regression models (Melo et al., 2020).  

In addition to bias, first-order asymptotic approximations for the covariance matrix of 

MLEs may be inaccurate in small samples. A common approach to mitigate this issue is to 

employ high-order asymptotic theory, which refines inferential procedures to enhance 

accuracy. Second-order covariance matrix approximations have been studied in various 
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contexts (Shenton; Bowman, 1977; Peers; Iqbal, 1985), offering more precise confidence 

intervals and hypothesis testing results. Several studies have addressed second-order covariance 

corrections, including Rocha, Simas, and Cordeiro (2010), Lemonte (2011), Cordeiro et al. 

(2014), Magalhães (2016), and Lemonte (2020).  

This study follows two key statistical inference approaches for the Unit-Lindley 

regression model. The first focuses on deriving the bias correction expression for the maximum 

likelihood estimators (MLEs) in this model, aiming to reduce bias in small samples. While 

Mazucheli, Menezes, and Chakraborty (2019) obtained bias corrections for the parameter of 

the Unit-Lindley distribution, our study extends this to the regression model parameters. The 

second approach aims to derive a formula for the second-order covariance matrix of the MLEs. 

Using this refined covariance matrix, we propose a modified Wald test for Unit-Lindley models, 

addressing the well-known issue that the standard Wald test, under small samples, relies on 

first-order asymptotic approximations that may lack accuracy. 

 The accuracy of statistical inference is particularly crucial in economic studies, 

where small or moderate sample sizes are common. Examples include analyses of economic 

growth, international trade, and sectoral performance, where biased estimators and imprecise 

confidence intervals can lead to misleading conclusions about policy effectiveness and key 

economic determinants. Therefore, bias correction techniques and higher-order asymptotic 

refinements enhance inference reliability, reducing errors in hypothesis testing and effect 

estimation. In the context of the Unit-Lindley regression model, the asymptotic refinements 

proposed in this study improve estimation precision, making the model more robust for 

applications in economics, such as growth rate analysis and trade modeling.  

In addition to providing a compact and accessible framework for these asymptotic 

refinements, we also present Monte Carlo simulation studies and an empirical application to 

real data. Our application focuses on Brazil’s economic growth rate and international trade. 

Recent studies have examined the determinants of economic growth in various regions, 

including OECD member countries (De La Fuente-Mella, Vallina-Hernandez, & Fuentes-Solís, 

2020), Africa (Oyebowale & Algarhi, 2020), and the Eurozone (Pegkas, Staikouras, & 

Tsamadias, 2020). Moreover, Oliveira and Lima (2024) analyzed the convergence between 

economic sector growth and socio-economic development indicators in the intermediate 

regions of the Brazilian border zone, using data from 2005 to 2017. In developing countries, 

macroeconomic factors such as foreign aid, foreign direct investment, fiscal and monetary 

policies, international trade, physical and human capital, natural resources, and geopolitical and 

financial conditions play a significant role in shaping economic growth (Chirwa & Odhiambo, 

2016). Episodes of accelerated growth— characterized by a per capita growth increase of 2% 

or more—are particularly noteworthy (Hausmann, Prichett, & Rodrik, 2005), as i exemplified 

by Brazil’s rapid economic expansion in the 1960s and 1970s. 

By bridging statistical methodology and economic application, this study provides 

methodological advancements that enhance inference in models used for economic growth 

analysis, offering more reliable tools for policymakers and researchers. 

The rest of the paper is organized as follows. In Section 2 we present the Unit-Lindley 

regression model. In Section 3 we derive improved MLEs, the second-order covariance matrix, 

and an improved Wald test in the Unit-Lindley regression model. Monte Carlo simulation 

results are presented and discussed in Section 4, and Section 5 outlines an application for 
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illustrative purposes. Finally, in Section 6, we present the conclusions reached during the course 

of the study. 

 

2 REVIEW OF THE LITERATURE 

The Lindley distribution was proposed by Lindley (1958) and its probability density 

function (p.d.f.)  and cumulative distribution function (c.d.f.) are given, respectively, by: 

 

and  

                                                                                     (1) 

Mazucheli, Menezes and Chakraborty (2019) proposed the Unit-Lindley distribution. 

These authors used the transformation  in (1), which resulted in the following 

c.d.f. and p.d.f, respectively: 

 

and  

                                                                 (2) 

Moreover, Mazucheli, Menezes and Chakraborty (2019) reparameterized (2) in terms 

of the mean  obtaining 

                                                         (3) 

Let , , …,  random sample the Unit-Lindley distribution with p.d.f. (3), i.e., 

, . The regression model is defined by  

                                                                                                                            (4) 

with ,  being the vector of unknown parameters , 

 the linear predictor and  the observations on p known covariates. The 

 link function is known, and is strictly monotonous and twice differentiable. 
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Possible link function choices  are: logit , complementary log-log

 and probit  where  is the standard normal 

cumulative distribution function. Here, we used logit. The log-likelihood function is given by 

 

The score vector, the observed and expected information matrix are respectively, given 

by 

                                      and                                    (5) 

where X is the covariate matrix, the i-th element of the v vector is 

 

the i-th elements of the diagonal matrices  and 

 are given, respectively, by 

 

 

We denote  and  as the first- and second-order derivatives, respectively, of 

 with respect to , or i = 1, 2,.., n and j = 1, 2, …, p. When the link 

function is logit we have 

and  

The maximum likelihood estimator (MLE) for vector , , can be 

obtained by equating  to zero and solving the resulting system. However, such a system 

does not have closed-form solution and the use of iterative methods, such as nonlinear 

optimization algorithms are necessary. 
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3 METHODOLOGY 

In this section, we present the second-order bias correction and an expression for the 

second-order covariance matrix for the maximum likelihood estimator of the unknown 

parameter vector  in the Unit-Lindley regression model. In addition, we present an improved 

Wald test. 

 

3.1 IMPROVED ML ESTIMATORS 

The general expression for the second-order bias correction of the MLE, proposed by 

Cox and Snell (1968), was obtained in matrix form by Cordeiro and Klein (1994):  

vec  

where vec(.) is the vec operator, which transforms a matrix into a vector by stacking the 

columns of the matrix one under the other,  is Fisher's information matrix defined in (5) 

and  is an array with dimension  where each  has the -th 

element given by 

 

where  and  are tensor notations for the cumulative log-likelihood derivatives 

introduced by Lawley (1956): ,  and  (t,s)-th 

element of Fisher's information matrix  For the Unit-Lindley regression model we have  

                                          (6) 

with  being -th element of the 𝑋 matrix. The corrected maximum likelihood estimator 

is given by 

, 

 denotes the value of  valued at . Note that the second order bias vector 

 involves only simple algebraic operations between matrices. This expression can be 

easily calculated using software with support for matrix operations, such as R (R Core Team, 

2022). 
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3.2 SECOND-ORDER COVARIANCE MATRIX 

Following Lawley (1956) notation to denote cumulants of the log-likelihood function, 

we have 

 

and its derivatives , and . In addition, 

 

A formula for a second-order covariance,  is provided by Peers and Iqbal 

(1985). From Magalhães (2016) we have the matrix form 

 

where the (a, b)-th element of  is given by , and  

 

 

 

For the Unit-Lindley model, after performing some algebra, it can be expressed as  

                                                  (7) 

where “ ” denotes the direct product of matrices (or Hadamard product), 

,   is a matrix ( ) of ones, 

 with  for . Furthermore, we have that the -th 

elements of the matrices  and  are, respectively,  and , for 

, where, 
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The expression given for  in (7) also involves only simple operations between 

matrices. Therefore, it can be easily computed using the R software. 

 

3.3 IMPROVED WALD TEST 

Let the parameter vector be partitioned as , where  is the 

vector of parameters of interest and  is the vector of nuisance parameters. 

Here, the null and alternative hypotheses are, respectively:  and , where 

 is a known q-vector. The unrestricted maximum likelihood estimator of  is denoted by 

. We use “^” for matrices and vectors to indicate that they are computed at . 

The Wald statistic for testing  is  

 

where  is the upper left submatrix of  for the parameters of interest. 

The improved Wald test is obtained by replacing  with the second-order 

covariance matrix , which denotes the upper left submatrix of  for the 

parameters of interest. That is, 
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We emphasize here that the  statistics does not change the order of convergence of 

the Wald test (Magalhães, 2016). 

 

4 RESULTS AND DISCUSSION 

4.1 MONTE CARLO SIMULATION 

In this section, we present the results of Monte Carlo simulation experiments in which 

we evaluate the finite sample performance of the original MLEs and their bias-corrected 

version. In addition, we compare, via Monte Carlo simulation, the first-order covariance matrix 

 and the second-order covariance matrix  in relation to the sample (empirical) 

covariance matrix for small sized samples. Finally, we evaluate the finite sample performance 

of the Wald test (W) and its corrected version ( ). 

The simulations are based on the Unit-Lindley regression model (4). All simulations are 

performed using the R software (R Core Team, 2022). The number of Monte Carlo replications 

is 10,000 (ten thousand) with sample sizes  . The tests are carried out at the 

following nominal levels:  = 1%, 5% and 10%. The values of the covariates are taken as 

random draws from the uniform distribution U (-0.5,0.5). In this simulation study we consider 

the logit link function, that is, . We consider the model with two to six 

covariates and we tested one and two parameters (q=1,2). The true values set of the parameters 

are taken as , ,   and  for q = 1, whereas q = 2, 

, ,  and . 

Tables 1-2 present the bias, the bias-corrected estimates, and corresponding estimated 

root mean squared errors (RMSE) of the MLE for different sample sizes and covariates. In 

general, we observe that the bias-corrected estimates are less biased than the original MLE. For 

instance, when ,  (see Table 1) the estimated biases of  are -0,75 (MLE), and -0.02 

(bias-corrected). As n increases, both the bias and the root mean squared error of all the 

estimators decrease, as expected. 

In Table 3 we have the sample variances ( ), second-order variances ( ), and 

first-order variances  of  . Remember that . We observe in this table that 

the second-order variances, obtained in (3.2), are much closer to the sample variances than the 

first-order variances, when the sample is small. For instance, for  with  and  the 

sample and second-order variances are equal to 2.14 while the first-order variance is 1.59. We 

also observe that as the number of covariates (p) increases, the difference between the first-

order variance and the sample variances also increases. Furthermore, as expected, when the 

increase the sample size, these variances become are closer to each other. 

The null rejection rates of the Wald (W) and Corrected Wald tests ( ) are displayed in 

Tables 4 and 5 for different values of n and p; entries are given as percentages. We present the 

rejection rates of . When q = 1 (Table 4) we consider = 0 and q = 2 for (Table 
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5) we have . All tests were carried out at the following nominal levels: = 1%, 5% 

and =10%. The Wald test is markedly liberal when the sample size is small. For instance, for 

the case where p = 6 and q = 2, the Wald test displays rejection rates equal to 7.5% (  = 1%), 

16.8% ( = 5%), and 24.5% ( = 10%). The test based on the corrected Wald statistic shows 

better performance than the test based on the original Wald statistic in all cases, with rejection 

rates close to the nominal levels. For instance, when p = 5 , q = 2, n = 20, and  = 1%, the 

rejection rates are 1.2%$ ( ) and 2.0% (W). When p = 3 , q = 1, n = 10, the rejection rates are 

1.0%, 5.1%, 10.1% (  = 1%, 5%, 10%$) for  and 2.1%, 7.2%, 13.2%$ ( = 1%, 5%, 10%) 

for W. Overall, the best performing test is the one that employs   as the test statistic. 

 

Table 1 – Bias and RMSE of the ML estimates and their bias adjusted version; n = 10 and 20 

  ML  Bias corrected  ML  Bias corrected 

  
Bias RMSE  Bias RMSE  Bias RMSE  Bias RMSE 

 
 

0.23 1.26  0.01 1.24  −0.04 0.75  −0.01 0.75 

3 
 

−0.38 1.26  −0.02 1.18  −0.04 0.7  −0.01 0.70 

 
 

−0.34 1.27  −0.01 1.21  0.06 0.74  0.02 0.74 

 
 

0.30 1.31  0.02 1.28  0.00 0.74  0.00 0.75 

4 
 

−0.49 1.35  −0.02 1.23  −0.04 0.71  0.00 0.71 

 
 

−0.40 1.34  −0.02 1.26  0.06 0.79  0.01 0.79 

 
 

−0.01 1.10  0.00 1.10  −0.03 0.68  −0.01 0.68 

 
 

0.18 1.38  −0.03 1.37  0.00 0.78  −0.01 0.79 

 
 

−0.75 1.58  −0.02 1.38  −0.04 0.71  0.00 0.71 

5 
 

−0.42 1.35  −0.02 1.28  0.05 0.85  0.00 0.86 

 
 

0.15 01.09  0.00 01.08  −0.01 0.67  −0.01 0.67 

 
 

−0.47 1.54  −0.01 1.45  0.06 0.76  0.01 0.77 

 
 

0.89 02.08  0.06 1.82  −0.10 0.99  −0.03 0.98 

 
 

−1.03 1.79  −0.08 1.42  −0.08 0.75  −0.02 0.75 

6 
 

−1.08 2.17  −0.07 1.82  0.15 0.94  0.03 0.93 

 
 

0.18 1.28  0.02 1.23  −0.01 0.68  −0.01 0.69 

 
 

0.05 1.70  0.01 1.64  −0.09 0.86  −0.03 0.85 

 
 

0.73 1.90  0.06 1.70  −0.16 0.93  −0.04 0.92 

 

 



Refinamento de métodos assintóticos nos modelos de regressão Lindley-unitária: uma aplicação em dados de 

crescimento econômico 

438 

DRd – Desenvolvimento Regional em debate (ISSNe 2237-9029) 

v. 15, p. 427-445, 2025. 

Table 2 – Bias and RMSE of the ML estimates and their bias adjusted version; n=30 and 50 

  ML  Bias corrected  ML  Bias corrected 

  
Bias RMSE  Bias RMSE  Bias RMSE  Bias RMSE 

 
 

−0.02 0.58  −0.01 0.58  −0.02 0.43  0.00 0.43 

3 
 

0.02 0.54  0.00 0.54  −0.01 0.40  0.00 0.40 

 
 

0.04 0.54  0.01 0.54  0.02 0.41  0.00 0.41 

 
 

−0.01 0.57  0.00 0.57  −0.01 0.43  0.00 0.43 

4 
 

0.03 0.55  0.00 0.55  0.00 0.41  0.00 0.41 

 
 

0.04 0.57  0.00 0.57  0.02 0.42  0.00 0.42 

 
 

−0.01 0.54  −0.01 0.54  0.00 0.39  −0.01 0.39 

 
 

−0.01 0.61  −0.01 0.61  −0.01 0.45  0.00 0.45 

 
 

0.04 0.56  0.02 0.56  0.00 0.42  0.01 0.42 

5 
 

0.03 0.60  −0.01 0.60  0.01 0.45  −0.01 0.45 

 
 

−0.01 0.55  −0.01 0.55  0.00 0.41  −0.01 0.41 

 
 

0.06 0.62  0.01 0.62  0.02 0.46  0.01 0.46 

 
 

0.01 0.61  0.00 0.61  −0.01 0.44  0.00 0.44 

 
 

0.04 0.57  0.01 0.57  0.00 0.42  0.00 0.42 

6 
 

0.03 0.60  0.01 0.60  0.02 0.43  0.00 0.43 

 
 

−0.01 0.55  −0.02 0.55  0.00 0.40  −0.01 0.40 

 
 

0.04 0.60  −0.01 0.61  0.00 0.44  0.00 0.44 

 
 

0.04 0.60  0.00 0.60  0.00 0.43  0.00 0.43 

 

 

 

 

 

 

 

 

 

 



Pedro Ricelly Gama de Oliveira et al. 

439 

DRd – Desenvolvimento Regional em debate (ISSNe 2237-9029) 

v. 15, p. 427-445, 2025. 

Table 3 – Sample variances, second-order variances, and first-order variances of .  

         
  

 
 

 
 

 

  
   

 
   

 
   

 
 1.53 1.55 1.30  0.56 0.54 0.49  0.34 0.33 0.31 

 
 1.44 1.50 1.21  0.49 0.50 0.46  0.29 0.30 0.28 

 
 1.50 1.54 1.29  0.55 0.55 0.54  0.29 0.29 0.28 

 

  
 

 
 

 
 

 
 1.64 1.68 1.37  0.55 0.56 0.50  0.33 0.33 0.31 

 
 1.58 1.63 1.26  0.50 0.51 0.46  0.30 0.31 0.28 

 
 1.63 1.69 1.38  0.62 0.64 0.57  0.32 0.33 0.30 

 
 1.21 1.26 1.00  0.46 0.45 0.40  0.29 0.29 0.27 

 

  
 

 
 

 
 

 
 1.88 1.91 1.52  0.62 0.61 0.54  0.37 0.36 0.33 

 
 1.93 1.97 1.52  0.50 0.52 0.45  0.31 0.32 0.29 

 
 1.64 1.70 1.37  0.73 0.74 0.65  0.36 0.35 0.32 

 
 1.17 1.24 0.96  0.45 0.46 0.40  0.31 0.31 0.28 

 
 2.14 2.14 1.59  0.58 0.59 0.51  0.38 0.38 0.35 
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Table 4 – Null rejection rates q = 1 and different values of n and p; entries are percentages. 

   
 

 
 

 
 

  
 

  
 

  
 

  

 10  1.5 0.9  7.0 4.9  12.4 9.6 

 20  1.4 1.1  6.2 5.3  11.2 10.1 

2 30  1.2 1.1  5.7 5.1  11.0 10.2 

 50  1.1 1.0  5.9 5.4  10.6 10.2 

 10  2.1 1.0  7.2 5.1  13.2 10.1 

 20  1.5 1.1  6.3 5.1  12.1 10.4 

3 30  1.5 1.2  6.3 5.5  11.5 10.4 

 50  1.3 1.1  6.1 5.6  11.0 10.4 

 10  2.4 1.2  7.6 5.2  13.5 9.9 

 20  1.4 1.0  6.0 4.8  11.7 9.7 

4 30  1.3 1.1  5.7 4.7  11.0 9.8 

 50  1.1 0.9  5.4 4.9  10.7 10.0 

 10  2.3 1.0  8.2 5.1  14.4 10.3 

 20  1.6 1.0  6.4 5.0  12.3 9.8 

5 30  1.4 1.0  6.5 5.5  12.1 10.7 

 50  1.4 1.2  5.9 5.2  11.0 10.2 

 10  4.6 2.0  11.6 7.0  18.0 12.0 

 20  1.7 1.1  7.2 5.2  12.6 10.2 

6 30  1.6 1.0  6.2 4.9  11.7 9.9 

 50  1.3 1.0  5.9 5.1  10.8 9.8 
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Table 5 – Null rejection rates: q = 2 and different values of n and p; entries are percentages. 

   
 

 
 

 
 

  
 

  
 

  
 

  

 10  2.6 1.4  8.6 5.3  14.7 10.2 

3 20  1.4 1.0  6.5 5.3  12.0 9.9 

 30  1.4 1.1  6.2 5.1  11.6 10.3 

 50  1.2 1.0  5.4 4.9  11.1 10.2 

 10  3.5 1.8  9.9 6.1  15.6 10.7 

4 20  1.7 1.1  7.0 5.0  13.1 10.3 

 30  1.4 1.1  6.3 5.2  12.0 10.1 

 50  1.4 1.0  5.8 5.0  11.3 10.2 

 10  4.7 2.2  12.4 7.6  18.8 13.0 

5 20  2.0 1.2  7.3 5.1  13.2 10.0 

 30  1.6 1.1  6.7 5.3  12.6 10.3 

 50  1.4 1.1  6.0 5.0  11.2 9.9 

 10  7.5 3.1  16.8 9.0  24.5 14.9 

6 20  2.2 1.1  7.9 5.5  14.1 10.4 

 30  1.8 1.1  7.0 5.1  12.7 10.2 

 50  1.4 1.1  6.4 5.1  11.9 10.1 

 

4.2 REAL ILLUSTRATION: ECONOMIC GROWTH DATA 

The data used in this section were taken from Penn World Table 6.1 (Heston; Summers; 

Aten, 2002), whose goal is to model Growth Rate of Real GDP per capita as a function of 

openness in constant prices (OPENK) for Brazil from 1962 to 1973. We consider the following 

Unit-Lindley regression model to fit these data: 

 

where logit(.) is the logit link function, with i = 1, 2, ..., 12. In the simulated envelope 

(Figure 1), we observe that all residuals remain within the confidence bands, indicating that the 

fitted model adequately represents the data. 

The ML estimates are = 35.45 and = -6.11. The bias adjusted estimates are  = 

36.64 and = -6.13. Although the corrected estimates are close to the original estimates, the 

Akaike Information Criterion (AIC) yields a value of 18.10 for the case of the model whose 

estimates are uncorrected and -46.86 for the corrected version, indicating that the best fitted 

regression provides the corrected estimates. 

The first- and second-order variance of  are, respectively, = 428.86 and 

= 505.26. We observed a great difference between first- and second-order variances. 

For  we have no significant difference, since  = 3.29 and = 3.85. 
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Figure 1 – The Quantile–Quantile (QQ) plot of the randomized quantile residuals for Unit-Lindley regression 

models. 

 

 

Performing the test  we obtain the following values for 

uncorrected and corrected Wald statistics, respectively,  (p-value = 0.087) and  = 

2.49 (p-value = 0.115). At the 10% significance level, the corrected Wald test does not reject 

the null hypothesis, while the uncorrected Wald test rejects the null hypothesis.  

The tests lead to different conclusions, and the conclusion obtained using the adjusted 

test is compatible with that achieved in Veloso, Villela and Giambiagi (2008). These authors 

argue that Brazil's accelerated growth between 1968 and 1973 was not directly driven by trade 

openness but rather by a favorable external environment, including factors such as abundant 

international liquidity and increasing demand for Brazilian exports. The non-significance of the 

variable OPENK suggests that, unlike in more recent periods, trade openness was not a key 

determinant of economic growth in Brazil at that time. This may be attributed to the country's 

economic model, which was characterized by strong state intervention, import substitution 

policies, and public investments in infrastructure and industry. Moreover, the comparison 

between the statistical tests highlights the importance of using robust techniques to avoid biased 

conclusions about the determinants of economic growth.  
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5 CONCLUSIONS AND RECOMMENDATIONS 

In this paper, we use the Unit-Lindley regression model as an alternative for modeling 

data that take values in the (0,1) range, based on the Lindley distribution, which has good 

statistical properties. We presented two key theoretical contributions for small sample sizes: (i) 

the expression for correcting the bias of the maximum likelihood estimator and (ii) the second-

order covariance matrix formula, from which we propose a modified Wald test. The results 

showed that the corrected estimators exhibit less bias than the uncorrected ones, and the Wald 

test based on the second-order covariance matrix yields rejection rates closer to the nominal 

levels, as evidenced by the Monte Carlo experiments. 

In practical terms, we illustrated the application of these results using economic data, 

with the growth rate of real GDP per capita as the dependent variable and economic openness 

as the covariate. The application demonstrated that the corrected Wald test produces  inferences 

that differ from those obtained using the original statistic. This approach has significant 

implications for economic data analysis, especially in small sample contexts. 

Finally, we suggest that future research explore alternative methods of refinement in 

hypothesis testing, such as those based on the likelihood ratio statistic rather than the Wald 

statistic. 
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